您好,欢迎来到染化在线! 登录 免费注册 帮助中心
关注

加入QQ群:131192077

0757-23608899
当前位置 > 首页 > 解决方案 > 拒水拒油与涤纶织物防水透湿整理的发展
拒水拒油与涤纶织物防水透湿整理的发展
点击:1207 发表时间:2021-06-23
【导读】:拒水拒油与涤纶织物防水透湿整理的发展 李淑华 刘兆锋 胡盼盼 ...
关健字:拒水拒油、涤纶织物、防水透湿

                                                                    拒水拒油与涤纶织物防水透湿整理的发展              

                                              

                                                                李淑华 刘兆锋 胡盼盼

                                              (南通纺织职业技术学院, 南通, 226007) (东华大学)

   
摘 要:综述涤纶织物的防水透湿整理及拒水拒油整理的机理、方法、整理剂类型等,探讨荷叶效应在涤纶织物拒水拒油整理方面的应用及其发展前景。

关键词:聚酯纤维 涤纶 防水透湿 拒水拒油 整理 

涤纶是纺织用化学纤维中左右全局的产量最大的一个品种[1]。近年来除用于仿真丝薄型服装面料化智能化方向发展[3]一些经过特种整理的新型纺织品还能提供各种优异的功能,涤纶织物的防水透湿及拒水拒油整理就是其中之一[4]


1  防水与透湿整理

防水性和透湿性可以从织物结构和加工方式上取得一致。水汽分子的直径一般为4 ×10-4 μm ,雨控制在水汽分子可通过而水滴不能通过的范围内便可起到防水透湿的作用。热的传递,湿的传递方式有两种:出汗发散(液相传递和无感蒸发排泄 气相传递人体随环境和活动状态及穿着衣服的不同,在人的皮肤周围出现的人工气候,其相对湿度为50 %,舒适温度为32 ℃。的新合纤织物所具有的共同点是较佳的柔软度、较好的悬垂性和优美的光泽,至少具有某种特殊类型的手感(如桃皮绒、干触感、精纺触感、仿真丝感觉),偶尔也加工成具有某种特殊美感和某些特殊功能(如深着色 、混色效应 、丝织物的声音、表面起绒等)。第三是基本结构设计。第四是基本制造设计。表1列举了确定达到指定的美学或功能效果的基本结构设计元素。织物的透湿性与纤维的种类、织物的结构和织物的整理等密切相关。当服装内侧的温度高于外侧时,蒸汽分子能通过织物细密通道,与外界进行热湿交换[ 6] 

涤纶的防水透湿织物主要有如下三种。


1.1  经拒水整理的高密织物

紧密型防水织物是利用改变织物结构而达到防水透湿的目的,此类织物是最早研制成功的防水透湿织物[7]。其依据为:水汽在纱线空隙之间简单的扩散;纤维束之间的毛细管传递;在单根纤维之间的纤维为原料[8] ,此类织物中,纤维之间、纱线之间紧密排列,使织物在不进行拒水整理的情况下,耐水压于毛细管效应的存在,能很好地传输水蒸汽。紧密型织物的优点在于制备工艺简单,主要是纱线和丝纤度的变化,制成的衣物悬垂性好,透湿性佳。但该类织物耐水压较低,大大限制了其应用范围。

2 层压织物

层压织物又称粘贴薄膜型防水透湿织物,是把功能性膜粘贴到织物上。按所用的功能性膜可分为三类:微孔膜、致密亲水膜、微孔亲水结合膜。粘合剂在此处也起到很重要的作用。粘合剂主要有两种:透湿型,可连续涂层;不透湿型,只能以网点式粘合,不至于破坏透湿性。此类织物最成功、最著名的是美国W .L.Gore公司的Gore-Tex织物[3] ,它是利用聚四氟乙烯微孔膜与织物复合而成。由于该微孔膜的制备需要特殊的设备与工艺,产品加工难度大,成本高,成衣价格贵,其柔软性、悬垂性不令人满意。

1.3 涂层织物

 涂层法是指织物直接或间接地进行涂层,使织物具有防水性,透气性是通过产生微孔结构或使其具有亲水性而得到的[7]。它可以分为微孔涂层法、亲水性涂层法、微孔亲水结合法三种类型。涂层织物的生产工艺的成本较低,亲水性涂层以水为溶剂,成本低,污染少。亲水性涂层可按传统工艺进行。但涂层法以有机溶剂体系为主,溶剂回收设备费用较高,且易造成环境污染。织物涂层处理后,悬垂性和柔软性变差,防水耐久性差,附着牢度差。

2 涤纶织物的拒水、拒油整理及其发展情况

拒水整理的目的是阻止水对织物的润湿,利用织物毛细管的附加压力,阻止液态水的透过,但仍然保持了织物的透气透湿性能。拒水整理织物首先用于生产军服、防护服,现在已广泛用于制作运动服、旅行包、旅行装、帐篷等。国内、国际市场上对这类面料的需求正在逐年增加。根据润湿理论分析[9] ,水的表面能比较高,为72.6 mJ m2 , 拒水材料的表面能必须比此值小 。油类的表面能一般在20~40 mJ m2 ,拒油材料的表面能必须比此值小。油的润湿能力远大于水,所以,拒油的物质一定拒水。而一般的涤纶织物,表面能远大于水和油的表面能,因此,为了使涤纶织物拒水拒油,就要在其表面涂一层低表面能的材料。硅橡胶的表面能约为25 mJ m2 ,是比较理想的拒水材料,氟树脂的表面能约为5 mJ m2 ,是比较理想的拒油材料。


2.1 拒水 、拒油整理剂在涤纶织物拒水拒油整理中的应用

由拒水拒油整理的机理看出,在涤纶织物表面吸附一层物质,使其原来的高能表面变为低能表面,就可以获得具有拒水效果的织物,且表面能愈小效果愈好。国内外生产和使用的拒水剂主要有以下几种: 1)石蜡-铝皂类;2)吡啶季铵盐类;3)羟甲基三聚氰胺衍生物;4)硬脂酸铬络合物;5)有机硅型;6)氟烷基树脂类[10]。前五类拒水剂有共同弱点:不拒油、不防污、耐洗性差。


近年来,含氟化合物在织物拒水、拒油、防污整理方面的应用正在发展中。在纺织品拒水加工中,氟烷基化合物的实用化是在20世纪50年代,最早由美国杜邦公司进行氟聚合物织物拒水拒油整理的尝试,并率先发表了以四氟乙烯乳液作为织物拒水拒油整理剂的专利。以后美国3M公司又研制开发了以全氟羧酸铬的络合物为主要成分的织物整理剂,但很快被性能更好的含氟丙烯酸酯形成的聚合物所取代,并用于织物拒水拒油整理,推出的商品为Scotchgard ,而后杜邦的 Teflon 、旭硝子的Asdhigard 、大金工业株式会社的Unidyne等相继问世[11]。这些含氟拒水剂具有拒水、拒油性,而且不损害纤维原有的风格,因此得到迅速普及推广,成为当今拒水剂的主流[ 12] 


国外最早将有机氟树脂运用于尼龙、涤纶、涤棉、棉等织物的拒水拒油整理报道较多。国内在拒水性方面研究也有一些报道。


2.2 荷叶效应在涤纶织物拒水拒油整理中的应用

  近30多年来,德国科学家通过扫描电镜和原子力显微镜对荷叶等2万种植物的叶面微观结构进行观察,揭示了荷叶拒水自洁的原理,并申请了专利。根据荷叶效应(Lotus-effect)原理,德国科学家已经研制成功具有拒水自洁的建筑物表面涂料,而且从1999 年开始上市销售。具有同样性能的屋瓦也于2000 年底上市销售 ,具有荷叶效应的服装也正在研制中[13]。由于荷叶效应具有广阔的应用前景,并具有很高的商业价值,所以关键技术和原理都申请了专利,并严格保密。


荷叶效应的秘密主要在于它的微观结构和纳米结构,而不在于它的化学成分。Holloway于1994年对荷叶等植物的表面化学成分进行了分析。所有植物表面都有一层表皮,表皮将植物与周围环境隔开。所有植物的表皮主要成分都是埋置于多元酯母体内的可溶性油脂,因此,植物的表皮都具有一定的拒水性。经过对2万种植物表面进行分析后发现,具有光滑表面的植物都没有拒水自洁的功能,而具有粗糙表面的植物,都有一定的拒水作用。在所有的植物中,荷叶的拒水自洁作用最强,水在其表面的接触角达到160.4°。除了荷叶外,芋头叶和大头菜叶的拒水自洁作用也很强,水在其上的接触角分别达到

160.3°和 159.7°[3] 。水在各种常用纤维表面上的接触角如表1所示[14]


表 1

各种纤维与水的接触角





纤维


测定者所测定的接触角(°)

立花等

根本等

Hollies 

Stewart 


59

47

粘胶

38

39

羊毛

81

78

85

锦纶

64

61

83

70

腈纶

53

53

48

涤纶

67

64

79

75







       表1中可看出,不同的测定者,数据是有差异的。但从总体上看,没有一种纤维使水在其表面的接触角大于90°。所以常用纺织纤维都不具有拒水能力。当然,更不具有拒油的能力。

       通过研究荷叶效应的拒水自洁原理可知,具有高度拒水自洁的织物必须具备如下条件:1)首先应使纤维表面具有基本的拒水性能(即水在其表面的接触角大于90°)。可以通过纳米技术、等离子体处理技术和涂层浸轧技术达到。如:利用高温下有机过氧化物等分解形成自由基,引发自由能较低的含硅或含氟的有机单体,对涤纶织物表面接枝改性[15]。2)使织物具有粗糙的表面。虽然织物表面本身是非常粗糙的,但这种粗糙结构是以纤维为最小单位,远大于纳米结构的要求。拒水自洁织物表面的粗糙应是纤维表面的粗糙,该粗糙应达到纳米级水平[14]。因此,利用仿生学原理,将荷叶效应原理应用于涤纶织物的拒水拒油整理中,将可以研制出一种超强的拒水透气纺织品。

3 发展前景

       荷叶效应能够在理论上突破常规的拒水材料研制思路,将降低材料的表面能和产生微观结构的粗糙度结合起来,使织物的拒水、拒油性能提高,并使织物具有良好的透气性。

      美国科学家H .C .Von Baeyer[16]认为,荷叶效应在织物拒水拒油整理方面应用的研究成果具有广阔的应用前景。超强拒水透气织物,首先可用在高科技领域中,例如:用于现代军事和战争的服装,除了遮风挡雨,可在恶劣的潮湿环境中,使战士们保持干爽舒服,而且可以防止有毒液体的侵入。随着某些血液传播疾病在世界范围内的肆虐横行,可用作保护医务人员不受血载病菌侵害的医用(血液)屏障织物。可用作生物保护服,更可制作民用的风雨衣和体育服装。所以,涤纶作为化学纤维中的最大品种及其具有的优良性能,利用荷叶效应对其进行拒水拒油的差别化处理,将可研制出一种超强的拒水透气的涤纶纺织品,广泛地应用于工业、农业、军事、民用等各方面。

参 考 文 献

1 胡祖明等.涤纶纤维及加工技术进展情况.合成技术及应用,

1998(2):32 ~ 36 .

2 周向东.涤纶细旦丝织物有机氟树脂耐久性拒水拒油整理.印染助剂, 1996(4):7~16.

3 顾振亚等.拒液纺织品开发的新途径.棉纺织技术, 2002(1):13

~16 .

4 汪 建等.纺织品拒水拒油整理的机理与应用.河南化工, 1999

(10):38 ~ 40 .

5 Lomax G R .Joural of Coated Fabrics , 1985(7):40 ~ 46 .

6 朱利容等.防水透湿织物技术性能探讨.四川丝绸, 2000(3):20

~22 .

7 付延鲍等.防水透湿织物的发展与现状.青岛大学学报, 1999

(12):33 ~ 35 .

8 arrient Meinander.VTT Tied .1993:1527 ,45 .

9 狄剑锋.硅橡胶涂层织物表面能及稳定性研究.纺织学报, 2001

(5):311 ~ 313 .

10 陶乃杰.染整工程(第四册).北京:中国纺织出版社, 2001 :131~150 .

11 罗巨涛等.纺织品有机硅及有机氟整理.北京:中国纺织出版社,

1999 :1~ 21 .

12 张旺笋.防水透湿织物加工技术的进展.产业用纺织品, 2000

(6):4~ 8.

13 Wilhelm Barthlott . Christoph Neinhuis .l ' effet Lotus :Surfaces Autonettoyantes Selon l ' exemple de Nature .International Textile Bulletin , 2001(1):8~ 12 .

14 杜文琴.荷叶效应在拒水自洁织物上的应用.印染, 2001(9):36

~ 43 .

15 雷景新.含氢硅油表面接枝改性PET织物的拒水性能.功能高分子学报,2000(9):317~320 .

16 H.C .Von Baeyer.New York Academy of Sciences , 2000(2):12 ~ 16 



染化在线网版权与免责声明:

1.本着“开放、协作、分享”的互联网精神,我们欢迎各方自媒体、传统媒体与机构,转载、引用染化在线的原创内容,但必须注明来源自染化在线网,否则我们将依法追究侵权责任。

2.原则上,我们同意在注明出处的前提下,各方使用染化在线的原创素材(图片、视频等)。

3.染化在线网尊重各方知识产权,保护原创作者的合法权益。如发现本站文章存在版权问题,请联系微信rhzxzjf,我们将及时核查、处理。

相关搜索
产品信息
  • ANFONE安氟诺®RH-1039ANFONE®RH-1039

    价格:登录后显示

    服务流程 定制全程实时提醒